Differentiation Formulas

• Derivative of a constant is zero:

$$\frac{dc}{dx} = 0$$

• Derivative of f(x) = x is 1:

$$\frac{d}{dx}x = 1$$

• Derivative of $f(x) = x^n$ is:

$$\frac{d}{dx}x^n = nx^{n-1}$$

• Derivative of $f(x) = \sqrt{x}$ is:

$$\frac{d}{dx}\sqrt{x} = \frac{1}{2\sqrt{x}}$$

• Derivative of $f(x) = e^x$ is itself:

$$\frac{d}{dx}e^x = e^x$$

• Derivative of $f(x) = e^{ax}$ is:

$$\frac{d}{dx}e^{ax} = ae^{ax}$$

• Derivative of $f(x) = \ln x$ is:

$$\frac{d}{dx} \ln x = \frac{1}{x}$$

ullet If f is a function and c is a constant, then

$$(cf)' = cf'$$

 \bullet If f and g are functions, then

$$(f+g)' = f' + g'$$

Example 1: Evaluate the derivative of $f(x) = x^4$.

Solution: Using the power rule:

$$f' = \frac{df(x)}{dx} = 4x^{4-1}$$
$$= 4x^3$$

Example 2: Evaluate the derivative of $f(x) = 3x^5$.

Solution: Using the same rule:

$$f' = \frac{df(x)}{dx} = 5 \cdot 3x^{5-1}$$
$$= 15x^4$$

Example 3: Evaluate the derivative of $f(x) = 7x^2 - 4x + 8$.

Solution: We can distribute derivative over addition. Don't forget that the derivative of a constant is zero:

$$f' = 2 \cdot 7x^{2-1} - 4x^{1-1} + 0$$
$$= 14x - 4$$

Example 4: Evaluate the derivative of $f(x) = x\sqrt{x}$.

Solution: The power rule is applicable to this case. Remember that $\sqrt{x}=x^{1/2}$.

$$f' = \frac{d}{dx} x^{1+1/2}$$
$$= \frac{d}{dx} x^{3/2}$$
$$= \frac{3}{2} x^{1/2}$$
$$= \frac{3}{2} \sqrt{x}$$

Example 5: Evaluate the derivative of $f(x) = x^2 - 3 \ln x$.

Solution: Once again, use distribution:

$$f' = 2x - \frac{3}{x}$$

Example 6: Evaluate the derivative of $f(x) = 1 + x^3 + e^{-x}$.

Solution: Note that e^{-x} is the same thing as $e^{-1 \cdot x}$:

$$f' = 3x^2 - e^{-x}$$

Example 7: Evaluate the derivative of $f(x) = \frac{4}{x} - 5e^{7x}$.

Solution: Note that $\frac{4}{x}$ is the same thing as $4x^{-1}$:

$$f' = 4 \cdot (-1) \cdot x^{-1-1} - 7 \cdot 5e^{7x}$$
$$= -\frac{4}{r^2} - 35e^{7x}$$

Example 8: Evaluate the derivative of $f(x) = \frac{1}{x^2} + \frac{1}{e^{3x}}$.

Solution: Note that $\frac{1}{e^{3x}}$ is the same thing as e^{-3x} :

$$f' = \frac{d}{dx} (x^{-2} + e^{-3x})$$
$$= -\frac{2}{x^3} - 3e^{-3x}$$

Derivatives - Exercise Set

Evaluate derivatives of the following functions:

1)
$$f(x) = 3x^{12}$$

2)
$$f(x) = 2 - 4\sqrt{x}$$

3)
$$f(x) = x^2 \sqrt{x}$$

4)
$$f(x) = 7e^x - e^{4x}$$

5)
$$f(x) = x + \frac{1}{x}$$

6)
$$f(x) = 3x^4 - 8\ln x$$

7)
$$f(x) = x^3 - e^{-3x}$$

8)
$$f(x) = \frac{6}{x^4}$$

9)
$$f(x) = \ln x - \frac{x^2}{\sqrt{x}}$$

10)
$$f(x) = \frac{e^{-7x}}{7} + \frac{e^{5x}}{5} + \frac{1}{35}$$

Answers

1)
$$f'(x) = 36x^{11}$$

2)
$$f'(x) = -\frac{2}{\sqrt{x}}$$

3)
$$f'(x) = \frac{5}{2} x^{3/2}$$

4)
$$f'(x) = 7e^x - 4e^{4x}$$

5)
$$f'(x) = 1 - \frac{1}{x^2}$$

6)
$$f'(x) = 12x^3 - \frac{8}{x}$$

7)
$$f'(x) = 3x^2 + 3e^{-3x}$$

8)
$$f'(x) = -\frac{24}{x^5}$$

9)
$$f'(x) = \frac{1}{x} - \frac{3}{2}\sqrt{x}$$

10)
$$f'(x) = -e^{-7x} + e^{5x}$$